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Abstract

Solving sequential decision making problems in computational sustainability often requires simulators of ecology,
weather, fire, or other complex phenomena. The extreme computational expense of these simulators stymie optimiza-
tion and interactive visualization of decision rules (policies). This work presents our results in creating an interactive
visualization for a wildfire management problem whose simulator normally takes several hours to run. We successfully
generate visualizations for a landscape’s development over 100 year time spans within 17 seconds, when the original
simulator took several hours.

1 Introduction

Many computational sustainability problems require making decisions through time, including invasive species eradica-
tion [1]], and wildfire management [6]. Solving these problems involves maximizing expected reward by finding a policy
that selects the best actions for configurations of the world. For example, in invasive species problems we perform the
“eradication” and “restore” actions, then receive a reward proportionate to the number of native and invasive species on the
landscape. In the wildfire management domain, which we use as an example throughout this paper, we select suppression
decisions over 100 year time spans and receive rewards proportionate to the timber production of the landscape.

In machine learning we formalize these problems as Markov Decision Processes (MDPs), which describe the world in
terms of a finite set of states (.5), a finite set of possible actions that can be taken in each state (A), a function that gives the
probability of entering a state after applying an action in a state (P), and a function providing rewards for taking actions
in states (R(s, a)). Since ecological systems typically have more configurations than can be stored explicitly in a table,
the function P is implemented as a simulator that generates hypothetical futures (trajectories) subject to a policy. These
simulators are often sufficiently expensive to run that we must find ways to minimize their use when optimizing policies.

Many algorithms economize simulator expense by constructing trajectories for a policy based on the pre-computed results
of a different policy. This off-policy policy evaluation is particularly important for supporting interactive visualization
[[7]], which allow ecologists, land managers, developers, and policy makers to validate the assumptions incorporated into
simulators.

Fonteneau et al.’s [2]]’s Model Free Monte Carlo (MFMC) method is one approach for off-policy policy evaluation. MFMC
synthesizes trajectories by piecewise stitching state transitions together from a database of previously-simulated state
transitions. Since MFMC replaces simulations with a series of database queries, it can generate trajectories without waiting
for the simulator to run.

Our work currently under review for the 2016 conference on Neural Information Processing Systems (NIPS) addresses
two “curses of dimensionality” that make MFMC impractical for large state space MDPs that are typical of computational
sustainability problems. First, it is difficult to sample sufficient state transitions to gain database coverage of high dimensional
state-action spaces [3]]. Second, it is difficult to determine similarity among state-action samples in higher dimensions. We
solve these curses of dimensionality with a new algorithm, MFMCi, for problems with exogenous state variables, such as
weather in a wildfire management problem.
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(a) The standard MDP transition. (b) MDP transition with unobservable ex- (c) MDP transition with observable ex-
ogenous variables (wy,). ogenous variables (w,).

Figure 1: MDP probabilistic graphical models.

Since our goal is to support interactive MDP visualization, we use visual properties of the MDP visualization MDPVIS [7]]
to evaluate the performance of MFMCi. We use the unitless measurement of “visual fidelity error,” which is a measure of
how similar MDPVIS looks under MFMCi when compared to the visualization generated from the ground truth simulator.

We demonstrate MFMCi on a computationally expensive wildfire, timber, vegetation, and weather simulator that takes hours
to generate single trajectories. The aim of the wildfire management simulator is to inform wildfire suppression policies that
determine whether the US government will suppress a wildfire.

The fire simulator spreads fire spatially from an ignition point according to the surrounding pixel layers and the hourly
weather sampled from 26 historical weather years. Weather variables include hourly wind speed, wind direction, cloud cover,
minimum temperature, maximum temperature, temperature, humidity, and precipitation. We use MFMCi to synthesize
trajectories by modeling the weather time series and ignition locations as exogenous variables. The weather is exogenous
because, to a first approximation, neither the actions not the landscape influence the weather. Ignition location is exogenous
to the landscape because tree cover does not affect the ignition’s spatial probability distribution. Additionally, timber harvest
and vegetation growth are deterministic functions of the landscape, which means every state transition contains their results.

In the next section we provide additional theoretical background on our algorithm leveraging independencies of exogenous
state variables. In the results section we describe its performance in terms of our computationally expensive wildfire
management problem domain.

2 Methods

We address MFMC’s dimensionality issue by exploiting transition independencies that factor the state space into Markovian
variables that transfer between time steps, and exogenous variables that are combined with the Markovian variables at every
time step. For example, in the wildfire domain, the state of the trees from one time step to another is Markovian, but we
make decisions in response to exogenous weather events such as rain, wind, and lightning. By factoring out exogenous
variables, we can synthesize trajectories from the (lower dimensional) Markovian state space.

We can define the transition independencies in terms of probabilistic graphical models in Figure[I} The standard MDP
transition is in Figure[Ta] Figure[Tb|shows the setting of prior work [2 [5] that model “unobservable random disturbances”
(wy,). We call these unobservable exogenous variables, which are distinct from the observable exogenous variables (w, in
Figure of interest in this work.

MFMC normally selects state transitions from a database by matching a state action pair (s, a) to the first two elements
(s',a’) in the 4-tuple (', a’, 7', Spesuit)- It then adopts r’ as the one step reward and s,.¢s,¢ as the resulting state. In our
approach, we show how to decompose s into (x, w,) and then only match x against 2’ in the 5-tuple (2/, w/, a’, 7, Zresuit)-
Our algorithm, MFMCi, then adopts w!, as the instance of the exogenous random variable, 7’ as the reward, and Z;cs,¢ as
the resulting state. In order for this to work correctly, two conditions must hold. First, the values of w, in each state must be
independent and identically distributed. Second, the database must contain a separate tuple (z', w., a, ', Zyesui) for each
possible action a (we refer to sets of tuples containing the same x and w, but different a as transition sets) so that we can
look up the action corresponding to both the x and w,. Since we guarantee an action consistent with the policy will be in the
nearest tuple, we can reduce the dimensionality of the search for the nearest tuple to a distance in the space of = from the
(s,a) space.

Fonteneau et al. [2]] adopt Lipschitz continuity assumptions on the transition, reward, and policy functions to prove bounds
on the bias and variance of the estimated return of a policy. Their bounds depend on the Lipschitz constants, the number of
generated trajectories, and the sparsity of the database of transitions. We employed a similar set of assumptions, but by
reducing the dimensionality of the database’s space, we tighten the bounds derived from these assumptions.
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3 Results and Discussion

We define policies in terms of two thresholds: 7 and mgrc. Policy 7g is the maximum time until end of fire season at
which the fire will be allowed to burn. mg ¢ is the Energy Release Component (ERC) at which the fire is suppressed. We
seek to visualize trajectories for all combinations of 7 and Tggrc.

Our quantitative evaluation showed several interesting results. First, Figure [2a shows our factored metric performs well
across the entire policy space. The relatively higher values in the lower left of the chart result from leaving most of the
sample’s wildfires unsuppressed. Since unsuppressed fires have greater variance in the number of burned crown pixels (tree
foliage) and surface pixels, it would take more samples to drive down the Monte Carlo variance of the visualization than is
practical.

Table [2b] lists visual fidelity error for two policy classes using both the full database, and a database with half as many
samples. We constructed the halved databases by either removing all but one transition from the transition sets (biased), or
by removing all samples associated with even-numbered trajectories in the database (unbiased). The additional policy class
II;, suppresses all fires on one half of the landscape and otherwise allows them to burn. The results show the transition set is
more valuable for synthesizing trajectories for policy classes not found in the transition database. Such novel policies are an
important part of exploratory analysis that will be performed by foresters.

MFMCi generates trajectories more than 1200 times faster than invoking the simulator. Without these speedups, interactive
visualization and policy exploration of wildfire policies is not possible.
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