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Markov Decision Processes (MDPs) are a formulation for optimization problems in sequential decision making.
Solving MDPs often requires implementing a simulator for optimization algorithms to invoke when updating
decision making rules known as policies. The combination of simulator and optimizer are subject to failures of
specification, implementation, integration, and optimization that may produce invalid policies. We present
these failures as queries for a visual analytic system (MDPvis). MDPvis addresses three visualization research
gaps. First, the data acquisition gap is addressed through a general simulator-visualization interface. Second,

the data analysis gap is addressed through a generalized MDP information visualization. Finally, the cognition
gap is addressed by exposing model components to the user. MDPvis generalizes a visualization for wildfire
management. We use that problem to illustrate MDPvis and show the visualization's generality by connecting it
to two reinforcement learning frameworks that implement many different MDPs of interest in the research

community.

1. Introduction

Many challenging optimization problems in sustainability [13,18],
game Al [39], and autonomous control [27] require considering the
long-term impacts of actions whose outcomes are stochastic. For
example, forest managers must decide whether to suppress a wildfire
whose results may prevent wildfires from spreading over subsequent
decades [18]. A policy that accounts for these temporal and stochastic
effects is produced by an optimization system integrating several
components that are subject to failures of specification, implementa-
tion, integration, and optimization. Since the system stochastically
expresses and hides these failures (referred to as “bugs”), Testing and
debugging require exploration. Visual analytics is well suited to this
exploratory task. We introduce a generalized visualization (see Fig. 2),
MDPvis, to support this task.

This paper builds on the work of McGregor et al. [23] with details
on the users engaged in testing MDPs, additional details on the
theoretical formulation of MDPs, a set of parameter space analysis
examples within MDPvis, and details on integrating MDPvis with MDP
research frameworks.

To address a broader class of optimization problems, we target the
common optimization formulation of a Markov Decision Process
(MDP). In an MDP, the state of the world evolves stochastically from
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one state to another depending on the action chosen at each time step.
A scalar reward is received at each time step depending on the system
state and the chosen action. An MDP is solved by learning a decision
making rule (policy) that maximizes the long-term sum of rewards.

Some MDPs are small enough to solve with exact algorithms such
as Policy Iteration and Value Iteration [6], but most MDPs of practical
interest require Monte Carlo methods. In these cases, the standard
approach is to implement a software simulation of the MDP and then
apply a Monte Carlo optimizer, like policy gradient search [12,35] to
find a near-optimal policy.

Ng [26] relays an example of a soccer playing agent whose MDP
optimizer learns a policy that maximizes expected reward by exploiting
a bug. The soccer agent received a reward for touching the ball under
the theory that possession time is associated with scoring goals. Instead
of using ball possession to advance down the field, the agent stood by
the ball and began to “vibrate” to produce the maximum number of ball
touches. This bug can be viewed as a problem in specification (the
agent should not be rewarded for touching the ball), implementation
(the agent should not be able to vibrate next to the ball), integration
(the frequency of reward granted by the transition function for ball
touches is too high), and optimization (a more difficult to discover
policy may actually be optimal). The multitude of possible MDP bugs
and causes give rise to a highly iterative development process.
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During our design process for MDPvis we conducted a series of
semi-structured interviews [34] with MDP researchers to elicit current
practices for MDP development. We found a variety of ad hoc testing
systems in support of an “informed trial and error” [33] process
whereby MDP practitioners iteratively explore the parameter space.
MDP practitioners generally first write an interactive client to manually
execute transitions, followed by a visualization of state development as
a policy rule is followed. None of the researchers we interviewed use a
generic tool supporting this process. We hypothesize this is because
researchers have heretofore not had access to a visualization they can
easily connect to their MDP simulator and MDP optimizer.

MDPvis makes three contributions. First, it introduces a domain
independent protocol by which the visualization system can interact
with the MDP optimizer and MDP simulator. Second, it provides a
visual interface that supports the data analysis tasks that problem
domain experts, software developers, and optimization researchers
need to perform. Third, it provides an interface by which the users can
interact with the MDP simulator and optimizer to test and compare
different parameters and explore their effects on the resulting behavior
of the system.

These three contributions relate to the three challenges identified
by Sedlmair et al. [33]: the data acquisition gap (getting the data into
the visualization tool), the data analysis gap (helping the user visualize
the data), and the cognition gap (helping the user uncover important
behavior embedded within high-dimensional systems).

Software testing is a subfield of software engineering that includes
more precise definitions of testing, and bugs. In this paper, we take a
high-level view of testing. In particular, we define testing as the “
execution of a program with the intent to produce some problems -
especially a failure” [41]. These failures are generally called “bugs”.

In other words, developers test software for bugs by comparing the
results of execution to the expected results. It is clear from this
definition that testing requires the developer 1) associate program
output with program input in order to create test cases by executing the
code under specific input conditions and 2) compare actual outputs to
expected outputs. Our visualization tool supports these two tasks
within the context of MDPs.

Our design process for MDPvis followed Munzner's nested model
[25], which includes steps for characterizing the problem domain and
designing visual encodings. In the following sections we formally
introduce MDPs with their Data and Task Abstraction, detail the
contexts where users test and debug MDPs in Section 3, review the
optimization visualization literature in Section 4, give our visual
encoding for MDPs in Section 5, and present the visualization's
prototype for the Wildfire Suppression domain in Section 6.

2. Data and task abstraction

While several different MDP formulations are used in the literature,
there is a de facto standard formulation from which other formulations
are viewed as specializations. We formally state the MDP as the
standard infinite horizon discounted Markov Decision Process (MDP)
with a designated start state distribution [5,30] M = (S, A, P, R, 7, Py).
S is a finite set of states of the world; A is a finite set of possible actions
that can be taken in each state; P: S X A x S_ [0, 1] is the conditional
probability of entering state s' when action a is executed in state s;
R(s, a) is the reward received after performing action a in state s;
y € (0, 1) is the discount factor, and Py is the distribution over starting
states. Generally the goal for optimizing an MDP is to find a policy, 7,
that selects actions maximizing the discounted expected value of the
MDP. For convenience we also define B, to be the distribution of states
at time n when following policy 7.

This formulation specifies a model that generates data in the form
of “Monte Carlo rollouts” detailed in Fig. 1. These rollouts are the
output of the system under test and their distribution is controlled by
the parameters of the MDPs' constituent functions.
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Fig. 1. A set of three rollouts generated starting at states drawn from the initial state
distribution (Po) and transitioned between states s;; where i is the time step and j is the
rollout identifier. The current policy (z (s; ;) selects actions until a rollout depth of 3. The
initial states and all subsequent states are defined on a set of quantitative and categorical
variables. Each state transitions to resulting states by evaluating the transition function
until reaching the time horizon or terminating state. The transition function draws the
resulting states from a distribution that is a function of the current state and the action
selected by the policy function. We highlight a set of states drawn from the distribution of
states at a particular time horizon under policy 7. We label this set P; , for time step 1
under policy 7.

Sedlmair et al. [33] label techniques for understanding the relation-
ship between input parameters and outputs as Parameter Space
Analysis (PSA), “...the systematic variation of model input parameters,
generating outputs for each combination of parameters, and investi-
gating the relation between parameter settings and corresponding
outputs”. This is a suitable definition for the MDP testing process.
Finding MDP bugs requires exploring the rollouts to test for bugs.

Tables 1-6 give a series of testing questions derived from experi-
ence optimizing for a wildfire suppression policy domain and from
interviewing MDP algorithm researchers not involved in the wildfire
policy project. The tables label these questions according to the tasks of
Sedlmair et al. [33] for visual parameter space analysis: fitting,
outliers, partitioning, optimization, uncertainty, and sensitivity. In
several cases we broaden the definition from Sedlmair et al. [33] to fit
the scope of MDPs. We also indicate whether the testing question
invloves the reward function (R), the transition function (P), the policy
(71, or the optimization function (M).

Fitting, “Where in the input parameter space would
actual measured data occur?”: In many applications the MDP
simulator simulates real-world phenomena. While we typically do not
have access to real-world validated data across the entirety of the state
and action space, we do often have state transition data for a subset of
the parameter space. Further, while the MDP practitioner may not have
access to ground truth data for their system, they can often identify
when the system is producing unrealistic outcomes. See Table 1 for
fitting questions.

Outliers, “What outputs are special?”’: Sedlmair et al. [33]
breaks the outlier task into learning from the outliers of a model and
checking the plausibility of the more extreme cases. The outliers are
particularly important for plausibility during the testing phase of MDP
development because an optimization algorithm moves through many
potential policy functions while searching for an optimal policy. Each of
these functions may push the MDP towards more extreme, and
potentially less plausible states or state transitions. Even carefully
crafted reward functions can result in the optimizer exploiting unfore-
seen interactions between the MDP's constituent parts. The capacity for
a policy to earn rewards from unlikely events mean outliers influence
policy optimization even when they are rare events. See Table 2.

Partition, “How many different types of model behaviors
are possible?”: Here Sedlmair et al. [33] focus on relating partitions
of the output space to the inputs. We expand Sedlmair et al.'s definition
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Table 1
Fitting MDP testing questions .
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Table 4

Optimization MDP testing questions .

ID Question

Interaction

ID Question Interaction R P n M
1 Is the reward function View the discounted or e o0 0
giving the expected undiscounted rewards as a fan
rewards? chart and filter down the rollouts
or regenerate rollouts with fixed
policies.

2 Do the rewards reflect  Filter to individual rollouts and °®

stakeholder examine its rewards.
preferences?
3 Do simulated Examine individual rollouts. o0
transitions result in
realistic states?
4 Do simulated View the histograms of state Y

transitions result in variables at the horizon.

15 Can the user do better than
the optimized policy by
changing the parameters?

16 Is the policy converged to a
local optimum?

17 Is the policy converged to
an acceptable local
optimum?

18 Is the optimization
algorithm making efficient
use of computation?

Change the parameters of
the policy function and
generate new Monte Carlo
rollouts.

Ask it to optimize from the
current position.

Change the starting policy
to a completely different
policy and re-optimize.
Add variables to the output
describing the learning
process.

realistic state

distributions?

5 Does the historical Add a variable for each variable
policy produce the with historical data that gives
historical results? the variable's percentile. Display

this derived variable in a fan
chart.
Table 2

Outlier MDP testing questions .

ID Question Interaction

6  Are rollouts that complete Load the failing and
different from rollouts that completing rollouts as a
break? comparison.

7 Does the policy Detecting this
inappropriately exploit unforeseen problem
modeling choices? requires exploration.

8  Are the most extreme state Filter to the most
transitions realistic? extreme transitions.

Table 3

Partition MDP testing questions .

ID Question Interaction

9  What is the state of the world  Select only the rollouts
when the transition function that don't complete and
breaks? explore them.

10 Does one policy have a higher ~Compare the rollouts
risk of catastrophic outcome from both.
despite having a better
expected value?

11  Are action selections Filter the histograms to
meaningful? a single state and see

what action is selected.

12  Does an optimized policy Compare the rollouts
realistically outperform a from both.
hand-coded policy?

13  Are state transitions realistic? ~ View state detail.

14 Do policies differ in their Generate two sets of

resultant state distributions as  rollouts under different
expected? policies and compare.

partitioning tasks involve filtering rollouts (defined here as interac-
tively subsetting the rollouts) to look at more specific cases or
generating rollouts under new parameters. These steps are often part
of other PSA tasks, as can be seen in the overlap of Table 3 with other
PSA tasks.

Optimization, “Find the best parameter combination gi-
ven some objectives.”: We expand on this definition to also include
testing the optimization algorithm itself. When testing new optimiza-
tion algorithms on complex MDPs, it is often not obvious whether the
algorithm is getting stuck in a local optimum, exploited a bug in the
simulator, or could not find a way to improve outcomes. It is important
to have tools that enable the optimization researcher and domain
expert to collaborate around the optimization towards either improving
the optimizer or the specification of the MDP. See Table 4.

Uncertainty, “How reliable is the output?”: Optimization
algorithms produce policies that select actions regardless of how
confident it is in the selected action. States where the optimization
algorithm is most uncertain about which action to select require testing
to determine whether the uncertainty results from a near equivalence
in outcomes among actions or a bug. Another view of uncertainty is in
the aleatoric/statistical uncertainty of the transition functions. Testers
need to know the full distribution of outcomes that are possible at every
time step. See Table 5 .

Sensitivity, “What ranges/variations of outputs to expect
with changes of input?”: Sedlmair et al. [33] definition of
sensitivity shows the fluidity of PSA tasks since it touches all the other
PSA tasks in one respect or another. A particularly important aspect for
MDPs is sensitivity of the policy to changes in the reward function to
find why a learned policy is deemed near-optimal. If a learned policy is
not stable within its neighborhood of similar reward functions, it is
likely that the policy is not one that should be relied on in the real-
world. This sensitivity question uses the partition of state distributions
produced by policies optimized under different parameters to assess
modeling uncertainty. See Table 6 for similarly cross-cutting questions.

Section 5.3 has additional MDP testing discussion in the context of
visuals from MDPvis. Next we describe the roles that may be filled by
users of MDP visualization.

Table 5
Uncertainty MDP testing questions .

for testing MDPs to also partition the parameters producing similar or
divergent distributions of outputs. MDP testers have expectations for
parameter sets, particularly when changing the parameters to atypical
situations that should force extreme outcomes. Thus a tester will
generate rollouts for one partition of the parameter space, and compare
it to a different partition and check for the expected difference or
similarity in outcome. In interactive visualization for MDPs, many

ID Question

Interaction

19 What is the distribution
of states at a particular
horizon?

20 How certain is the policy
function about a specific
choice?

View the fan charts.

View the shifting distribution
of action selection while
filtering the state variables.
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Table 6
Sensitivity MDP testing questions .

ID Question Interaction R P 1 M

21 Do small changes in the Change parameters then o0 060
parameters produce vastly compare the two rollout
different outcomes sets.

22 Do small changes in the Change the parameters
parameters produce and reoptimize. 0o 00
different policies?

23 Do different policies earn Compare rollout sets. o000
reward through maximizing
different components of the
reward function?

24 Does the policy respond Change the reward ® ®
properly to changes in the parameters and re-
reward function? optimize.

25 What are the differences in  Load the two sets of o0

outcomes produced by
different policies?

26  What are the most
important drivers of policy?

rollouts as a comparison.

Filter variables in the °
histogram and watch how

the proportion of selected

actions update.

3. User roles

We identify four MDP development roles and give examples of
these roles in the context of wildfire suppression and autonomous
helicopters.

Policy stakeholders: MDP-derived policies often affect people that
are not party to the MDP optimization process. In the wildfire domain,
this stakeholder could be a home owner in the region modeled by the
MDP. For an autonomous helicopter, this stakeholder could be a
person purchasing a finished helicopter product. Our visualization in
Section 6 does not target this population because it limits the design
options for the following three groups.

Non-programmer domain experts: The MDP formulation can be
applied to many problems for which a non-programmer is the authority
on the simulated phenomena. A domain expert in the wildfire domain
could be a US Forest Service land manager tasked with writing timber
harvest and fire suppression policies. In the autonomous helicopter
domain, a domain expert could be a professional RC stunt pilot.
Visualizations help these domain experts validate the MDP by viewing
the output of the system without needing to directly interact with code.
Here the domain expert provides input to the software team regarding
where the current system is producing unrealistic results.

Software developers: Software developers may develop complex
MDPs from a specification written by domain experts. In the wildfire
setting, developers collaborate with several domain experts from
silviculture, fire modeling, and economics to produce a model integrat-
ing all these disciplines. In the autonomous helicopter domain the
developers may collaborate with domain experts from mechanical
engineering, computational physics, aviation, and the RC community.
Here software developers may use visualization to test against expecta-
tions, or use visualization as a collaboration tool to share simulations
and policies with domain experts.

Optimization researchers: After constructing an MDP, the optimization
researcher finds policies by applying existing optimization libraries or
developing new optimization algorithms. In either case, the complexities of
representing a problem domain in a form that can be efficiently optimized
requires optimization experience. The optimization researchers may use
visualization to test the correctness or performance of their algorithms. In
both the wildfire and autonomous helicopter domains, optimization
researchers will typically have formal training in optimization methods
but little grounding in the problem domain.

In real-world settings these roles are not well-defined. Each role can
be filled by a single person, or by a large team of developers and
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domain experts. MDPvis' target users are domain experts that are
willing to spend time learning the MDP formulation, software devel-
opers tasked with developing an MDP, and optimization researchers
tasked with optimizing a policy for the MDP.

4. Related work

Many problems have been formulated as MDPs, including domains
as diverse as RC car control [1,11], invasive species management [13],
and real time strategy games [39].

While no general large MDP visualization has heretofore been
proposed covering all these domains, there are numerous works that
could be viewed as visualization for more restricted classes of MDPs.

Several works present systems for exploring decisions at a single
time step. Broeksema et al. [10] give a decision analysis tool to examine
recommendations made by an expert system. Decisions are plotted as
Voronoi diagrams by means of Multiple Correspondence Analysis
(MCA), which is a version of Multidimensional Scaling (MDS). The
Voronoi diagrams lack a comprehensible coordinate system in two
dimensions, but adjacency of attributes plotted over the diagram show
how the decision variable changes as other attributes vary.

MDP policies are often specified via learned classifiers. Effectively
debugging classifiers is an active area of research, but published
research does not address debugging classifiers for MDPs. Groce
et al. [17] explore methods for prioritizing classified data points for
user inspection. Once a datapoint is selected the end user can decide
whether they agree with its classification. The user debugs the classifier
by correcting data labels, which leads to an update of the model. This
debugging strategy assumes that the only form of error was an
incorrect data label. In MDPs, however, there are no labels on the
data, and the central testing question is whether the simulator and
policy are generating the right data to begin with.

Kulesza et al. [19] includes a classifier debugging system for email
messages. The user provides model feedback and correction through an
interactive bar chart for a naive Bayes model. Kulesza et al. selected
naive Bayes for its interpretability since many classifiers are too
complex for end users to understand.

Migut and Worring [24] compose several information visualizations
into a visual analytic dashboard for exploring a dichotomous choice as
determined by a machine learning classifier. The system does not
examine multiple sequential timesteps.

In ensemble visualization, the goal is to provide a compact
representation of many predictive models of a singular ground truth
[29]. Uncertainty in the predicted result is reduced by viewing a
visualization of model agreement. In contrast, the uncertainty in
MDP visualization arises from the stochastic responses of the world
as the agent acts upon it. Ensemble visualization requires building
consensus, but MDP visualization requires exploring the complete set
of the world's potential responses to a policy.

A noteworthy visualization for natural resource management,
Vismon [7], gives an interface for exploring tradeoffs in a set of
management choices for an Alaskan fishery. Here the fishery manager
filters 121 different management choices derived from varying two
management parameters. The manager cannot view any management
options that are not pre-computed before selecting a policy.

Simulation steering is one branch of visualization that attempts to
bring the user into a optimization process by allowing the user to select
actions at each timestep as the simulator executes. Simulation steering
for epidemic response decisions in Afzal et al. [2] show individual
outcomes through time. The user can change decisions at various
points along a future rollout to see how the mortality rate responds.
This visualization provides user-based optimization for a deterministic
MDP.

Waser et al. [36] give another simulation steering visualization,
“World Lines,” that invites users to control emergency response for
flooding events. This visualization generates a small set of alternative
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futures based on an action in the present. Subsequent versions of to
World Lines [38,31,32,37] support stochasticity through secondary
simulation controls (random levee breach locations) on the probabil-
istic parameters of the model, but the visualization does not center on
machine learned policies.

In contrast to the current approaches in the literature that attempt
to give the best visualization possible for a particular problem domain,
our approach defines the visualization in terms of the formal properties
of a class of problems. While our analysis focuses on the core MDP
formulation, it is possible to use MDPvis with broader classes of MDPs,
including ones with partial observability, continuous-time, continu-
ous-actions, and multiple agents.

Partially observable MDPs (POMDPs) generalize by hiding state
variables from the optimizer. For example, a helicopter simulator will
simulate wind effects on the helicopter's position while not giving the
optimizer access to wind data because a physical helicopter will not
know the velocity of wind impacting its frame. When optimizing
POMDPs from Monte Carlo rollouts, the simulator will typically strip
hidden variables after they are simulated. While this may be necessary
for faithfully simulating the operational conditions of the policy, it is
often possible to visualize and test hidden variables because they are
known to the simulator.

In continuous-time MDPs, the action can be selected at any time
scale. For instance, in a helicopter domain the rotor's angles could
change at any fraction of a second. MDPvis assumes actions occur at
consistent time scales, so to visualize continuous-time domains it is
necessary to discretize time steps. In the helicopter domain, this would
take the form of selecting a sampling frequency within the simulator
that saves the state and action information. MDPvis handles contin-
uous actions like changing the angle of the rotor blade by treating them
as a continuous state variable.

Multi-agent MDPs model the interaction of multiple decision
makers. Each decision maker can have its own reward and policy
function, but exist within the same MDP simulator. In a helicopter
domain, this could take the form of two helicopters engaged in combat
maneuvers. MDPvis can support multi-agent MDPs by having separate
variables and parameters for each agent, but a visualization intended
specifically for multi-agent MDPs would be valuable future work.

5. Visual encoding of MDPs

Our visual encoding for MDPs in Fig. 2 is shown in four parameter
controls and three visualization panels. The controls give the reward,
model, and policy parameters that are exposed by the MDP's software.
These panels are cached in an exploration history that records the
parameters and rollouts computed by the MDP. Here we explain the
visual interface of MDPvis, followed by implementation details in
Section 6. Each of the following subsections describes the example in
Fig. 2.

5.1. Parameter panels

Rewards Specification: R (s, a)

Policy optimization is highly sensitive to changes in the parameters
of the reward function. To explore these changes we expose the set of
real valued reward parameters specified by the MDP as a list HTML
input elements.

Whenever the reward function parameters change, elements of
MDPuvis related to optimality and expected value are no longer valid.
The user interface updates to offer buttons for optimizing a new policy
and generating rollouts.

Model Definition: P.

The MDP's simulator may expose model parameters to tune the
system, or eliminate complexity for testing a specific component. These
can include modifiers of the transition function, the total number of
transitions to simulate (otherwise known as the horizon or sampling
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depth), the number of potential futures to sample (otherwise known as
the sampling width), modifiers to the initial state distribution, flags for
deactivating parts of the model, and fidelity switches for trading
execution time for higher fidelity simulations.

A second purpose of the model parameters is to expose elements of
the MDP's optimization algorithm to the user. Many MDP optimization
algorithms are highly sensitive to parameters for learning rate, search
depth, heuristics, convergence tolerance, and optimality requirements.
Selecting a reasonable set of these parameters is often an iterative
process.

When these parameters change, MDPvis enables buttons for
optimizing a new policy and/or generating new rollouts.

Policy Definition: 7z (s),_a

The policy controls specify the current policy. If the user chooses to
optimize then they can explore the sensitivity of the policy to changes
in the model or rewards. Checking this linkage between parameters and
policy determines whether the policy is stable for minor changes in the
reward function or whether the policies earn reward via different parts
of the reward function.

Just as was the case in the prior sections, it is appropriate to present
this control as a set of user-editable real numbers. When the policy is
represented by parameters that have no human interpretable meaning
as is the case with neural networks and sufficiently large decision trees,
then this simplistic policy representation is no longer appropriate.
While the visualization still answers many testing questions without
rendering the policy parameters, we believe the work of Broeksema
et al. [10] could be a good stand-in for this area when the user does not
need to modify the policy.

When the user updates the policy function it is necessary to
generate additional Monte Carlo rollouts for visualization in the areas
below.

Exploration History

As the user repeatedly generates sets of rollouts under different
parameter settings they may want to return to a prior parameter set to
continue exploration from that point or to compare the sets of rollouts
experienced under the prior parameter set. Here we add two buttons
for every set of rollouts that have been generated. One button will
reload the prior set of parameters and the rollouts that they generated
into the visualization. The other button will put the visualization into
“comparison mode,” which displays the difference between two rollout
sets in the visualization areas.

When in comparison mode the reward, model, and policy para-
meters cannot be edited since they display the differences in the
parameter values between the current set of rollouts and the one being
applied as a comparator.

More information about the comparison mode is included in the
following visualization areas.

5.2. Visualization panels

Having specified all the parameters, we can request rollout sets
from the MDP simulator and display them in the visualization areas.
The first two visualization areas show sets of rollouts and support
applying filters to the current rollout set. When we apply filters to the
rollout set in one visualization area, the displayed rollout sets update
throughout the visualization, i.e. the visualization is cross-linked.

State Variable Distribution at Event: £,

We show the distribution of states at a particular timestep as a
histogram. The user can select a range of values in the histogram to
filter rollouts. This supports a global-to-local [33] testing process where
exploration starts with an overview of all rollouts before drilling down
into specific rollouts. When the user drills down to specific rollouts the
count of filtered rollouts is shown as the unfilled portion of the
histogram bar.

When the visualization is in comparison mode the histograms
transform into a bar chart showing the difference in counts for the bins
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Fig. 2. A high level overview of the Markov Decision Process visualization prototype: MDPvis. The top row has the three parameter controls for (A) the reward specification, (B) the
model modifiers, and (C) the policy definition. A fourth panel gives the history of Monte Carlo rollout sets generated under the parameters of panels (A) through (C). Changes to the
parameters enable the optimization button found under the policy definition and the Monte Carlo rollouts button found under the Exploration History section. The visualization has two
buttons in the History panel for each set of Monte Carlo rollouts, one for visualizing the associated Monte Carlo rollouts and another for comparing two sets of rollouts. Below the control
panels are visualization areas for (E) histograms of the initial state distribution, (F) fan charts for the distribution of variables over time, and (G) a series of individual states rendered by
the simulator as images. For a readable version of the visualization we invite users to load the visualization in their browser by visiting MDPvis.github.io.

between the two sets of rollouts.

State Variable Evolution: P.

An important question when testing an MDP is “Do the state
distributions reflect the real-world? ” (See Table 1). In MDP problems,
there can be many variables that evolve over time to produce a
distribution of outcomes at timesteps. In this area we represent
distributions as fan charts giving the deciles of variables across rollout
timesteps.

To produce the fan chart, we first plot a lightly colored area whose
top and bottom represent the largest and smallest value of the variable
in each time step. On top of this lightest color we plot a series of colors
increasing in darkness with nearness to the rollout set's median value
for the timestep.

By giving the percentiles, we are able to show both the diversity of
outcomes and the probability of particular ranges of values. If the
number of rollouts is small enough to avoid the visual clutter of many
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intersecting lines, we render the rollouts as a line chart.

The user explores the conditional state distributions, P (SIS, € F) by
filtering (F) the rollouts. The filters between the fan charts and
histograms are cross-linked. When filtering the fan chart the filters in
the corresponding histogram updates, and vice versa. Changing the
timestep of the fan chart's filter updates the histograms to the newly
selected timestep.

When in comparison mode, the color extents are plotted by
subtracting a color's maximum (minimum) extent from the corre-
sponding maximum (minimum) extent of the other fan chart. Figs. 6,7,
and 15 shows fan charts rendered in comparison mode.

Once the user filters enough rollouts the fan charts switch to line
charts. Clicking on one of the lines in the line charts requests the state
detail.

State Detail:S;;

We considered but ultimately rejected rendering the details of
individual rollouts with a scatterplot matrix, parallel coordinates,
Multi-Dimensional Scaling (MDS), or Multiple Correspondence
Analysis (MCA). We found all these approaches would unnecessarily
tie the MDP practitioner to an inadequate representation. Instead, we
allow the MDP simulator to render a two dimensional array of images
or videos that will be shown at the bottom of MDPvis.

For example, in the wildfire domain the state of the world is
captured by four images of the landscape's timber and fuel values. Our
co-authors in forestry were already rendering these landscapes, as
shown in Fig. 2, so we integrated MDPvis with these standard
visualizations. Non-spatial MDPs would not render landscapes, but
they could return a visualization relevant to their practitioners.

5.3. Parameter space analysis (PSA) examples

Here we demonstrate the functionality of MDPvis for the PSA
categories given by Sedlmair et al. [33] with fictitious examples from a
wildfire domain. The intent of these examples is to illustrate how
visualization with MDPvis is analogous to unit testing with visual
expectations. In some cases these expectations could be written in
closed form as traditional unit tests, but traditional unit tests presume
the developer has the resources, expertise, and foreknowledge to codify
the expectation. We expand on the examples of this section with real-
world bugs in Section 7.

Testing Sensitivity with Interaction: Testing Question 26 in Table 6
asks “What are the most important drivers of policy? ” Policies are
typically functions mapping states to actions. This is an instance of a
function visualization problem of IS| inputs and |Al outputs. However, a
policy's tendency to inhabit a particular region of the state space means
we do not need to examine how the policy function maps all states to
actions. We can focus on the states produced by Monte Carlo rollouts
under the policy function. Testing a policy's sensitivity to the state
variables involves filtering (excluding) actions to see which state
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Fig. 3. We generated two histograms in MDPvis showing the dates a fire started on a
landscape, then filtered the rollouts based on the action taken in this time step. In both
these charts the filled portion represents fires that were allowed to burn unsuppressed,
and the unfilled portion represents fires that were suppressed. Since ignition date is
related to weather, we expect (top) to allow more fires to burn at the start and end of the
season, but not in the middle of the season when the landscape is much drier. A buggy
result (bottom) shows no apparent relationship.
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variables in the rollout set mapped to the unfiltered actions. Fig. 3
shows a visual expectation next to a buggy result.

Testing Optimization by Optimizing: Question 17 in Table 4 asks,
“Is the policy converged to an acceptable local optimum? ” The
expected reward of MDPs are typically non-convex functions, meaning
the optimization can terminate with policies that are clearly suboptimal
when viewing how the states map to actions. For bad policies we want
to know if the optimizer received an unlucky set of Monte Carlo
rollouts, started from a bad initial policy, or broke due to a buggy
implementation. To detect these three cases, we can change the
parameters of the MDP from to form an expectation of how the
optimizer should improve the policy.

For example, let's use optimization to test the optimizer of a wildfire
MDP. Specifically, let's start with a landscape covered by a species
whose timber is not valuable at harvest time. We would expect
suppression expenses to dominate timber harvests and produce a
policy that never suppresses fires as shown at the top of Fig. 4. If we
change the parameters of the MDP so that harvests are worth billions
of dollars, we would expect a newly optimized policy to begin
suppressing fires (the bottom of Fig. 4).

If the optimized policy does not change in response to these large
reward function changes, then there is likely a bug.

Testing Outliers with State Detail: Question 8 in Table 2 asks, “Are
the most extreme state transitions realistic? ” Many formal guarantees
of correctness or optimality are expressed in terms of the maximum
reward for a single time step. With optimization algorithms it is
important to validate the most extreme rollouts since they have
disproportionate effect.

In the wildfire domain, we may ask whether the most extreme
wildfires respect firebreaks established by previous fires. We can
generate state details for the largest fires by filtering the time step
with the largest fires in the fan chart. Once fewer rollouts are displayed,
we can generate the state snapshots whose expectations and buggy
results are shown in 5.

Testing Partition by Comparing: Question 14 in Table 3 asks, “Do
policies differ in their resultant state distributions as expected? ”
Domain experts may have mental models of MDP behavior subject to
various policies. These policies have expected partitions of the state
space. In MDPvis the domain expert can compare two different state
partitions through time using the fan charts. Fig. 6 shows a compar-
ison's expectation and a buggy result.

Testing Uncertainty by Re-Parameterizing: Question 20 of
Table 5, “How certain is the policy function about a specific choice? ”
We don't want the policy to change if we change the simulator's
parameters within the range consistent with real-world data.

For example, fire management practices are more effective today
than in the year 1900, but what if fire fighting practices continue to
improve (a form of structural uncertainty)? Fire managers will want to
know if the policy optimized for a future with better firefighting
technology will be different from the policy optimized for a continued
status quo. MDPvis explores structural uncertainty by permitting the
user to change parameters, such as “suppression effect,” and re-
optimizing. Fig. 7 shows two potential results of this analysis.

Testing Fit by Augmenting: Question 4 of Table 1 asks, “Do
simulated transitions result in realistic state distributions? ” Many
domains will have datasets for historical policies. These data give
distributions of state variables that can be compared against the
simulated distributions. We can add historical distributions by aug-
menting the dataset with a derived variable for each state variable
having historical data. This technique is best demonstrated with an
example.

In the wildfire domain, we take a variable for which we have many
real-world samples like “Growth Percentile”. Based on these historical
data, we can assign a “Historical Growth Percentile” as the percentile
value of each Growth Percentile value within the historical dataset.
Fig. 8 shows the visual expectation in the fan chart, which has
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Fig. 4. When we make timber harvest more valuable, we would expect an optimized policy to suppress more fires. Here we optimize a policy after changing the reward function to
increase timber value. We expect the suppression expenses of the top chart to update to the bottom chart after optimization.
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Fig. 5. The top row contains a single starting state and the bottom row contains an
expected result state (left) next to a buggy result (right). The dotted lines show a “fire
break” formed by a previous fire that should prevent future fires from spreading directly
across the landscape. By filtering to this outlier we can check whether the largest wildfires
are respecting fire breaks.

consistent percentiles across all time steps. A buggy result given in
Fig. 8 shows the percentiles of the simulated dataset departing from the
historical distribution.

6. MDPvis implementation
We built MDPvis as a data-driven web application. Building on the
web application stack affords two primary benefits. First, Brehmer and

Munzner [8] identify sharing as an important feature to implement and
the ubiquity of web browsers makes it an ideal platform for collabora-
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tion. Second, the web stack emphasizes standard data interchange
formats that ease integration with MDP simulators and optimization
algorithms. We identified four HTTP requests (initialize, rollouts,
optimize, and state) that are answered by the MDP simulator. These
requests do not assume a particular domain or implementation
language. In most cases the requests should be able to interface with
the MDP simulator and optimizer using the same command-line client
they would typically implement for testing a domain.

MDPuvis issues the following HTTP requests to the MDP simulator
and optimizer:

1. /initialize — Ask for the parameters that should be displayed to the
user. The parameters are a list of tuples, each containing the name,
description, minimum value, maximum value, and current value of a
parameter. These parameters are then rendered as HTML input
elements for the user to modify. Following initialization, MDPvis
automatically requests rollouts for the initial parameters.

2. /rollouts?QUERY — Get rollouts for the parameters that are
currently defined in the user interface. The server returns an array
of arrays containing the state variables that should be rendered for
each time step.

3. /optimize? QUERY — Get a newly optimized policy. This sends all
the parameters defined in the user interface for the MDP and the
MDP's optimization algorithm returns a newly optimized policy.

4. /state? IDENTIFIER — Get the full state details and images after the
user selects a rollout.

All relevant languages have web server libraries that can be
integrated with the MDP's code base for serializing Monte Carlo
rollouts. We integrated the wildfire domain with the visualization by
adding a serialization library (one line of code) and modifying a dummy
data file to initialize the domain. The most challenging integration task
was parsing the HTTP parameters into the expected data types for the
simulation code and writing the loop to invoke the simulator multiple
times.
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Fig. 6. These charts show two comparisons of the number of cells burnt for policies that allow all fires to burn or suppress all fires. When the color in the chart is above the center line,
the let-burn-all policy has more burnt pixels in that time step. We would expect (top) the number of cells burnt to be greater initially in the let-burn-all policy, but for the number of cells
burnt to decline as fires reduce fuel levels. A buggy result (bottom) shows a steady increase in cells burnt relative to the suppress-all policy.
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Fig. 7. Since we are uncertain how fire suppression effectiveness will change through time, we want policies optimized under different effectiveness levels to be similar. We can explore
policy similarity by comparing policies optimized under two different effectiveness parameters. The top chart is a comparison fan chart showing a single line straight across at zero. This
means there is no difference in the policy probabilities between the policies optimized under different suppression effectiveness parameters. The second chart gives a buggy result,

showing many differences in the policy probability between the two parameterizations.
6.1. Integration with reinforcement learning frameworks

Machine learning researchers typically evaluate new algorithms on
interesting challenge domains or toy domains that illustrate some
capability or failure of an algorithm. The problem domain collections of
Geramifard et al. [16], Bellemare et al. [4], Duan et al. [14], and
Brockman et al. [9] aim to unify the reinforcement learning research
community behind shared implementations with consistent APIs. We
integrated MDPvis with two reinforcement learning frameworks to test
our claims of the implementation's generality.

RLPy (Reinforcement Learning Python) is a collection of 26
problem domains. We integrated three of RLPy's 26 problem domains,
including the toy domains of Mountain Car and Grid World, and the
more challenging domain of HIV Treatment introduced by Ernst et al.
[15]. The web server and data munging code developed for the RLPy
domains can be found at McGregor [22] and is easy to adapt to the 23
additional domains in RLPy. We discuss our experience with three of
the domains below.

Mountain Car models an underpowered car trapped between two
hills. Successful policies in Mountain Car store energy by rocking the
car back and forth between the hills until it has enough momentum to
escape. We created a policy function for Mountain Car with a
parameter controlling the probability of reinforcing the current direc-
tion of travel by accelerating in that direction. We exposed this
parameter to MDPvis to explore different policy outcomes. The domain
has a parameter for “noise,” which gives the probability of randomly
assigning the action taken in a state transition.

After integrating RLPy's Mountain Car implementation with
MDPvis, we discovered the capitalization of the noise parameter in
the constructor differed from the default noise level. The result was a
failure to update the domain to the selected noise value. We discovered
this bug when testing RLPy's integration with MDPvis. Fig. 9 shows two
fan charts for the car's x position. The top chart has the domain as
initially visualized by a fan chart in MDPvis. The second fan chart in
Fig. 9 shows the fan chart after we fixed the bug. This bug would not be
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apparent to Mountain Car's developers because their visualization tools
do not show the absence of variance. We subsequently submitted a bug
fix to the RLPy maintainers, who merged the fix a day later. For more
details, see McGregor [20].

Grid World models navigation tasks in two dimensions.
Researchers often use it to explore an algorithm's ability to avoid
obstacles (pits) and learn increasingly long series of actions before
reaching a terminal reward. Unlike Mountain Car and our wildfire
domain, which only have two actions, the Grid World domains have an
action for each of the four cardinal directions. To accommodate
filtering rollouts based on action selection we munged the actions to
have their own indicator variable for each of the cardinal directions.
Fig. 10 shows the resulting fan charts for the actions as selected for a
set of rollouts generated by a random policy.

Grid World domains also illustrate the limitations of using a single
visualization for all MDP domains. Grid Worlds have a natural 2-
dimensional representation (a grid) that could be extended to support
the interactions of MDPvis. While our current design can render the
grid generated by RLPy in the state detail view, we implemented
MDPvis so developers can contribute different representations for
either the fan charts or the histograms.

HIV Treatment is a medical treatment domain introduced by Ernst
et al. [15]. HIV treatment has six immune system state variables that
are measured every 5 days over 1000 days:

T;: the number of healthy CD4" T-lymphocytes
T,: the number of healthy macrophages

T}*: the number of infected CD4* T-lymphocytes
T5: the number of infected macrophages

e V: the number of free virus particles

e E: the number of HIV-specific cytotoxic T-cells

HIV Treatment policies dynamically select one of four drug therapy
options, including reverse transcriptase inhibitor (RTI), protease
inhibitor (PI), a combination of these drugs, or no treatment. Each
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Fig. 8. Both charts give the simulated percentiles within the historical dataset. We expect (top) the percentile lines to go straight across the fan chart and meet the y-axis at the percentile
value matching the color. A bug (bottom) is indicated by a chaotic distribution that does not match up with the proper percentiles.
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Fig. 9. The two charts show the Mountain Car domain before (top) and after (bottom) fixing the noise parameter, which is set to 0.2 in both cases. The top chart shows no variation
across rollouts despite the expectation that the actions would stochastically change in proportion to the noise parameter.

drug affects a different step of the virus's replication process. Successful
policies produce a drug schedule that jointly minimizes virus count and
medication side effects. A typical real world policy includes “Structured
Treatment Interruption” (STI), which cycles patients between treat-
ment and non-treatment periods.

We created a parameterized policy class that mimicked our inter-
pretation of STI. The parameters are independent probabilities of
administering RTI and PI. We automatically administer both HIV
drugs if the patient's infected cells or free viruses are “spiking”.

Fig. 11 shows fan charts under three different policies. The top
chart is for a policy with high probabilities of administering both drugs,
and the bottom chart only administers drugs under the “spiking”
condition. Since the domain is implemented as a deterministic

integration of differential equations, we can see the outcomes converge
to a single patient history as the policy becomes more deterministic.
The scale of the spikes on the top chart is also greater than the spikes
on the charts administering less medication. This suggests that the
medication carries risks requiring further study.

The second set of domains we integrated was through the OpenAl
“Gym” framework of Brockman et al. [9]. OpenAl Gym is both a
collection of problem domains for researchers, and a leaderboard
website showing the relative performance of optimization algorithms
developed by researchers. It includes eight “environments” that range
from the simplistic classical control problems to Atari 2600 games from
Bellemare et al. [4]. The environments provide a total of 176 domains.

OpenAl Gym includes custom rollout animations for domains.
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Fig. 10. Four fan charts represent each of the actions taken for a Grid World domain. In this grid world map the agent starts in the lower left corner with a pit immediately to its right.
Successful policies will move up, right, then down to reach the goal grid cell. We created a stochastic policy that more frequently moves “up, ” followed by less frequent moves in other
directions. The fan charts show our simplistic policy does not change action selection probability through time. If we want to know what actions lead to or from a particular state, we can

apply filters to state variables and view the action fan charts.
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Fig. 11. The virus counts (V) for patients under three policies. The top fan chart was generated by a policy with a probability of administering RTI and PI of 0.4. The middle chart has
the probabilities of 0.01 and the bottom chart only administers the drug when the virus count is spiking. You can see the top chart largely keeps the virus to a minimum. The middle chart
is dominated by the automatic administration of RTI and PI when the patient is spiking, but the stochastic administration of the drugs in other time steps produces some variation. The
last chart shows the determinism of the HIV domain. All the patients have the same patient histories when the policy and domain are both deterministic.
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Fig. 12. MDPvis displays a media player for the video generated by the Pendulum
domain included in OpenAl Gym. This video is displayed by clicking the rollout
associated with it in the Fan Charts.

Developers can upload videos of these animations to OpenAl's servers
for display with their leaderboard entries. We integrated these videos
with MDPvis through the state detail panel.

OpenAl Gym problem domains can be classified as classic control
problems, or raw perception problems. Optimization in classic control
problems use relatively short state vectors where each entry in the
vector is a “feature”. These vectors may have fewer dimensions than the
complete state space, as is the case in our wildfire example that
optimizes on summary statistics of a landscape rather than the land-
scape directly. Raw perception optimization approaches problems from
the perspective of the human eye and shows the optimization algorithm
complete state information in the form of an image.

Optimization in raw perception domains blend selecting actions
and learning what combinations of pixel values are important. Machine
learning research labels the task of finding relationships in the data
that are important for decision making “feature learning”. The advan-
tage of feature learning is the ability to find complex relationships
among variables that are not readily detectible or compactly describ-
able by humans. Complex features represent a challenge for interpret-
ing policies is an active area of research by Zahavy et al. [40].

We integrated all four of OpenAl Gym's classical control domains,
which include Pendulum, Acrobot, Cartpole, and Mountain Car. We
also integrated all 55 Atari games bundled into OpenAI Gym by the
Arcade Learning Environment of Bellemare et al. [4]. The web server
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and data munging code developed for both these domain collections
share a single lightweight web server found at McGregor [21]. The
server integrates with each domain by specifying the name of the
domain and the names of the visualized state variables when starting
the server. This makes it possible to switch between the domains
without touching the web server's implementation. Next we highlight
two of the domains we integrated.

Pendulum is a domain concerned with balancing a pendulum by
applying torque either left or right so as to maintain the position of the
pendulum. Unlike all domains presented to this point, Inverted
Pendulum has a continuously valued action space bounded by the
maximum and minimum torque values. Continuous action spaces are
typically more challenging to optimize than discrete action spaces, but
they have an intuitive mapping within MDPvis. The histograms and fan
charts both vary continuously.

OpenAlI Gym includes a visualization for pendulum that shows the
position of the pendulum and the force applied. Fig. 12 shows the video
for a selected rollout in the State Detail area of MDPvis.

Ms. Pac-Man is a perception domain based on the popular 1982
title of the same name. The goal is to produce a series of actions that
avoid ghosts while consuming all the dots on the screen. To support
perception domains like Ms. Pac-Man we extended MDPvis with the
ability to define variables by images. Fig. 13 shows a time series defined
by an image saved from the initial game state. We use this image to
generate a similarity score for all of a rollout's frames, which is
displayed in the fan chart next to the image.

Our similarity metric comparing pixels at consistent screen co-
ordinates is not tied to the visual features that the optimization
algorithm determines are important. The work of Zahavy et al. [40]
show we can use components of neural networks for both selecting the
images and determining the similarity among images based on what
the network is paying attention to. We leave this effort to future work.

6.2. Debugging capabilities

Bugs may result from bad implementation (code) or from a bad set
of parameters. In the case of parameter choice, it is possible to fix
(debug) the problem without leaving MDPvis. However, non-program-
mer domain experts cannot fix bad implementation without sharing a
bug report with the software developer. Thus, MDPvis supports code
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Fig. 13. An annotated time series displayed within MDPvis for the Ms. Pac-Man Atari domain. The graphic on the right side is the image used to generate similarity scores by summing
the difference in each pixel between the displayed image and the image generated within the rollout. Many Atari games render different game state every other frame, which accounts for
the jitter in the time series. The text annotations (from left to right) show the initial phase of the game, followed by a phase in which the ghosts are hunting the dot-consuming player,
before a ghost catches the character and the character and ghost positions reset to the position found in the image on the right.

Fig. 14. Two sequential spatial snapshots of timber values for a state transition that
includes one of the largest fire loss events from 200 rollouts of 60 years. The management
area is visible in the center due to the rectangular timber harvests. These rectangular
harvests obscure the irregular boundary of small fires. (A) shows a medium size fire
obscured by a mixture of small fires and timber harvests in (B). The straight edge of the
largest fire introduced in (C) clearly shows the fire is not spreading in all directions.

debugging through collaboration, but more robust integration of
MDPvis with the software developer's Integrated Development
Environment (IDE) and version control would expand MDPvis's
debugging capabilities. In particular, MDPvis is not currently aware
of versions of the MDP simulator or optimizer. As code changes, it
would be useful to treat each build as a selectable parameter in the
interface. This would allow for more robust collaboration between team
members as implementations change.

7. Use-case study: wildfire suppression policies

We arrived at our generalized visualization by following Munzner's
nested model [25] for the problem domain of Wildfire Suppression
then generalized the results to all MDPs. Since the Wildfire Domain has
high-dimensional states, it is representative of a particularly challen-
ging group of MDPs.

We expressed the suppression policy as a differentiable function
with interpretable coefficients. Each coefficient resembles a weight that
would be generated by a logistic regression. Increasing a coefficient's
value makes it more likely that a wildfire will be suppressed for
increasing values of the corresponding state variable. We use policy
gradient methods [35,3,28] to optimize new policies, which have the
advantage of being both fast and likely to improve the policy from an
uninformed policy for all sample sizes.

Our wildfire suppression domain combines models for fire spread,
vegetative growth, weather, suppression effectiveness, suppression
cost, and harvest. One of the most difficult questions any landscape
modeler faces is how much realism is necessary to address the
hypothesis at hand? More realism means greater development, com-
puter processing, and computer memory requirements, while less
realism can lead to results that are nonsensical at best and misleading
at worst. The fact that the state space is so large makes it difficult to
comprehend how each assumption affects the final outcome. mppvis
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allows us to explore ways in which the simulator is failing, either
through hard-to-find technical bugs or “garbage in, garbage out”
assumptions that are affecting the way we value different outcomes.

e used MDPuvis in a use-case study to provide anecdotal evidence of the
utility of MDPuvis. This case study is based on user sessions with our forestry
economics collaborators who formulated fire suppression policies as an
MDP optimization problem. Throughout the design and development
process, we worked closely with these domain experts, who are co-authors
on this paper, to identify their needs as developers of MDP solutions. The
analyses in this section were performed by these experts during their first
use of MDPvrs, in conjunction with a Ph.D. student from computer science
who implemented MDPvis but did not contribute to the development of the
MDP.

We detected bugs for most of the questions of Tables 1-6 and
highlight interesting cases with their interactions under their corre-
sponding analysis tasks below.

Fitting: Several failures to simulate real conditions were detected.
Upon filtering the rollouts to the ones containing the most extreme
fires, we examined the state details and found that the fires were not
spreading east or south from the ignition site (see Fig. 14). We could
only see this on the larger fires because the rectangular timber harvests
were masking the unusual shape of the fire spread.

Outliers: A common real-world wildfire suppression policy sup-
presses the vast majority of wildfires so it forms a natural baseline for
comparisons. To better illustrate the outcomes of a suppress-all policy,
we compared it to a let-burn-all policy and found a surprising fact: the
let-burn-all policy has higher expected reward than the suppress-all
policy. This shows that either the models do not balance the various
rewards of fire suppression properly, or a policy that is completely
opposite from current forestry practices produces better outcomes. We
found the reason for this counterintuitive result after filtering rollouts
to only display outlier fires. Large fires immediately increase the
harvest reward because the maximum allowable harvest is a function
of tree growth. The harvest level is depressed without large fires
creating the conditions for explosive post-fire growth.

Partition: When comparing two different policies (see Fig. 15)
under otherwise consistent parameters, we observed a slight difference
in the percentiles of the weather events. Since these weather events are
exogenously determined by a random number generator with a
consistent seed, this difference indicates that the random number
generator is called differently depending on the action that is selected.
Without fixing this bug we cannot compare a landscape's response to
different policies under the same set of ignition events. Further, this
means fire managers can choose the weather by running experiments
under different policies until it experiences the best possible condi-
tions.

Optimization: Although the policies reported by our policy
gradient algorithm improved upon our naive baselines, we found it
easy to improve upon the machine optimized policies by changing the
policy parameters. This shows that the optimizer is failing to find a
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Fig. 15. Fan charts for the suppression choice and the ignition date shown in
comparison mode for two rollout sets. We generated one rollout set under a suppress-
all policy and a second rollout set under a let-burn-all policy. We confirmed that the
proper action is being selected for each state by observing the differences in suppression
choices is always 1. However, there is an unexpected difference in the dates, which should
be consistent between the two rollout sets.

local optimum.

We were able to identify the most likely source of the problem:
when we optimized policies for increasing rollout depths we found a
runtime bug with our implementation of importance sampling that
produces a division by zero. We hypothesize that this runtime fault is
causing our optimization function's other anomalous results.

Sensitivity: When viewing the timber harvest chart in comparison
mode, the lack of substantial differences in harvest volumes for
different policies indicates that the harvest volume is not sensitive to
the policy. Additional comparisons after fixing bugs showed harvests
are only significantly impacted when old growth forest dominates the
landscape and trees stop growing. Since the model rarely reaches 100%
old growth, the harvest level is not sensitive to the policy.

Uncertainty: The invariant harvest reward means it is always
better to let the wildfire burn. After using MDPvis with other US federal
land wildfire simulators, we found this lack of uncertainty to be faithful
to real world tradeoffs. This poses an epistemological problem to our
team of wildfire suppression optimization researchers. Finding inter-
esting research questions requires changing to a privately managed
landscape, or including a case analysis of policies optimized for
different harvest levels.

8. Conclusion and availability

This paper presented MDPvis, a domain-independent tool for
supporting the testing and debugging of MDP simulation and optimi-
zation software. MDPvis employs a simple web service protocol to
interact with the MDP simulator and optimizer, and supports many
visual analysis tasks related to MDP testing. Mppvis supports viewing
rollout distributions over time and temporal comparisons between
policies (either policies produced by the optimizer or policies designed
by the user). When we integrated MDPvis with a simple reinforcement
learning domain in a widely used research framework we unexpectedly
found a bug. We presented a use-case study in which our users
immediately discovered several serious bugs. We also discovered
interesting behavior that is either a bug or an indication that real-
world policies diverge significantly from the optimal policy. Our users
report that MDPvis is already greatly accelerating their testing and
debugging processes, and they are looking forward to applying it to
other MDP simulators.

A live version of MDPvis, the source code, and integration instruc-
tions are available at MDPuvis.github.io.
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