Incorporating Future Values into Analysis of Current Wildfires

Sean McGregor, Rachel Houtman, Ronald Metoyer, Thomas Dietterich, Claire Montgomery, Mark Crowley

Why Future Value?
Today's wildfires determine the fuel composition of the landscape in future years. Good suppression decisions can produce benefits in future suppression costs, timber production, ecological value, and recreational value that will be realized in the decades to come. Evaluating the "future value" of a current wildfire allows for a complete analysis of the tradeoffs in suppression decisions.

Methodology: Simulations

We linked together standard growth and fire spread models to produce a wild land simulator for 100-year periods. The simulator takes a suppression policy as input to determine responses to fires. The simulator then produces many "rollouts" (figure 1). See reference 1 for details

Many Years Produces Many Potential Outcomes
We can't predict what the landscape will look like in 100 years, but we can produce a distribution of potential landscapes.

Figure 2. Dataset production

We need your help to build tools that matter

How You Can Help Us Build the Tools

Are you involved in shaping policies or making decisions about fire management? Are you willing to be involved in a focus group? Please take the time to talk with us and leave your contact information.
There are things we think we know (see "Challenges for Visualizations")?
Are we missing anything? Are we emphasizing the wrong information?
What information would make your job easier?

Supporting decision making

 through visualizationThe resultant distribution of landscapes is difficult to interpret with standard statistical tools (figure 3). We seek to utilize visualization as a means of exploring the set of potential wildfire policies

Visualization makes the distribution of futures accessible
Visualization may help decision makers form mental models for longer time horizons
Visualization may allow stakeholders to interact with proposed policy documents

Figure 3. Distribution of Simulated Outcomes (mockup)

Challenges For Visualizations
Creating something that is useful for policy makers and managers, while addressing the fact that the future is highly uncertain, so single outcomes are meaningless. How do we show the distribution of outcomes while not losing the detail of individual outcomes (figure 4)? How do we incorporate both the spatial and tempora aspects of current decisions into visualizations.

Figure 4. Seeing the Forest AND the Tress

Example: Comparing Policies
We allow policy makers to define arbitrary policies in a process of "what-if" analysis.
Figures 5 and 6 show a mockup of a landscape's burn frequency under two different policies and figure 7 shows their difference

Figure 5. Burn Frequencies in Year 40, Suppress All Fires (Mockup). [Frequent, less frequent, rare]

Policy (A)
Figure 6. Burn Frequencies in Year 40, Let Burn Al
Fires (Mockup) [Frequent, less frequent, rare] Fires (Mockup) [Frequent, less frequent, rare]

Figure 7. Delta in Policies, Figure 5 - Figure 6 [Much more frequent, More frequent]

References
. Houtman, R. M., et al. "Allowing a wildfire to burn: estimating the effect on future fire suppres
(2013): $871-182$.

Contact
Sean McGregor
Cean McGregor
VisPoster@seanbmcgregor.com

This material is based upon work supported by the National
ny opinions, findings, and conclusions or recommendations
expressed in this material are those of tre uththors) and do necessarily reflect the views of the National Science Foundation

