

COLLEGE OF ENGINEERING

Facilitating Testing and Debugging of Markov Decision Processes with Interactive Visualization

> Sean McGregor, Hailey Buckingham, Thomas G. Dietterich, Rachel Houtman, Claire Montgomery, and Ronald Metoyer

COLLEGE OF ENGINEERING

What are Markov Decision Processes (MDPs)? Sequential Decision Making Under Uncertainty

composite_3.png burn_4.png

fuel_2.png

Wildfire Suppression

Autonomous Helicopter⁰

Mountain Car

Logistics¹

Medical Diagnosis²

Outline

1. Markov Decision Processes (MDPs) **Basic Introduction** Testing 2. MDPvis DesignTesting ExamplesMDPvis Use Case Study

3. Concluding

Notation, M = $\langle S, A, P, R, \gamma, P_0 \rangle$

S	All States of the World
P ₀	Starting State Distribution
Α	Available Actions
<i>R</i> (<i>s</i> , <i>a</i>)	Rewards
γ∈ (0, 1)	Discount
P	State Transition Probabilities (Simulators)
$\pi(s) \rightarrow a$	Policy

Puterman, M. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Programming (1st ed.). Wiley-Interscience.

Motivating Domain of Wildfire

Starting in 1935, the United States adopted the "**10 AM policy**"

We need a more nuanced approach.

4

Remember-Only you can **PREVENT THE MADNESS!**

Houtman, R. M., Montgomery, C. A., Gagnon, A. R., Calkin, D. E., Dietterich, T. G., McGregor, S., & Crowley, M. (2013). Allowing a Wildfire to Burn: Estimating the Effect on Future Fire Suppression Costs. International Journal of Wildland Fire, 22(7), 871–882.

http://www.fs.fed.us/sites/default/files/2015-Fire-Budget-Report.pdf

Modeling Wildfire

S	All the possible configurations of trees/ignitions
P ₀	A snapshot of the current forest, with a random fire
A	Suppress or let-burn
R(s, a)	Timber harvest, Suppression Expense
γ∈ (0, 1)	0.96 (Forest Service Standard)
P	Several Simulators
$\pi(s) \rightarrow a$	Suppress all fires

Represents a challenging and more general class of MDPs

- High Dimensional States
- Large State Space
- Integrates Several Simulators

COLLEGE OF ENGIN	IEERING	MD	Ps: Basic Introduction
Simulators	Optimizer	Rewards	Policy

COLLEGE OF ENGIN	IEERING		MD	Ps: Basic Introduction
Simulators Optimizer		timizer	Rewards	Policy

Start with Today's Landscape

COLLEGE OF ENGIN	IEERING	MD	Ps: Basic Introduction
Simulators	Optimizer	Rewards	Policy

(Continue Until Reaching the Horizon)

	COLLEGE OF ENGIN	IEERING		MD	Ps: Basic Introduction
Simulators Opt		timizer	Rewards	Policy	

A High Dimensional Probabilistic Time Series

...And this is just one of many!

COLLEGE OF ENGIN	IEERING		MD	Ps: Basic Introduction
Simulators Optimizer		imizer	Rewards	Policy

Monte Carlo Rollouts

Oregon State

The Rollout Distribution Changes!

MDP Testing Challenges

- Bugs are probabilistically expressed in a high dimensional temporal dataset.
- The dataset changes with changes to parameters.
- The **optimizer sees more of the state and policy space** than the user.

Testing requires exploring rollouts and parameters

MDP Debugging and Fault Isolation

Deactivate/modify components to isolate fault
 > e.g. Balance reward magnitude and frequency

Debug MDP specification and integration with **parameter changes**

COLLEGE OF ENGINEERING

MDPs: Testing/Debugging

Testing and Debugging Process

27

Outline

- Markov Decision Processes (MDPs)

 Basic Introduction
 Testing

 MDPvis

 Design
 Testing Examples
 MDPvis Use Case Study
- 3. Concluding

Introducing MDPvis

What are the elements of the MDPvis design?

Parameter Areas

\$ Reward Specification

~ 1 Discount 🕄

\$ 500 Suppression Fixed Cost 🚯

\$ 500 Suppression Variable Cost 🕄

Model Modifiers

Y 20 Years to simulate 🕄

40 Futures to simulate 🕄

129 Landscape Size 6

% 0.95 Harvest Percent ()

10 Slash Remaning 🕄

2 Fuel Accumulation

% 0.5 Suppression Effect 🕄

~ 0 Use Original Bugs 🕄

Policy Definition

0 Date 🕄

0 Days Left 🕄

0 Temperature 🕄

0 Wind Speed 1

0 Fuel Load 24 🕄

 ${\mathcal C}$ Optimize a New Policy

History Area

\$ Reward Specification

- ~ 1 Discount 6
- \$ 500 Suppression Fixed Cost
- \$ 500 Suppression Variable Cost

🌣 Model Modifiers

20 Years to simulate **()**

- # 40 Futures to simulate
- # 129 Landscape Size ()
- % 0.95 Harvest Percent (
- # 10 Slash Remaning **8**
- # 2 Fuel Accumulation 6
- % 0.5 Suppression Effect
- 0 Use Original Bugs 🛈

Constant O
Constant O
Date O
Days Left O
Temperature O
Wind Speed O
Fuel Load 8 O
Fuel Load 24 O

Optimize a New Policy

State Detail

Event Number: 13 Pathway Number: 4

timber_81.png fuel_82.png composite_83.png

burn_84.png

Oregon State

Comparison $\pi_1 - \pi_2$

 $\pi_1 - \pi_2$

Take Difference in Counts

Comparison $\pi_1 - \pi_2$

F 700

- 300 - 200 - 100

Lo

UNIVERSITY

State details

Allow MDP Simulator to Generate State Visualizations

Parameter Space Analysis (PSA)

"[PSA] is the systematic variation of model input parameters, generating outputs for each combination of parameters, and investigating the relation between parameter settings and corresponding outputs."

Categories

Sensitivity Optimization Outliers Partition Uncertainty Fitting

49

Sedlmair, M., Heinzl, C., Bruckner, S., Piringer, H., & Möller, T. (2014). Visual parameter space analysis: A conceptual framework. Visualization and Computer Graphics, IEEE Transactions on, 20(12).

0 50 100 150 200 250 300 350 date

MDPs: Testing/Debugging COLLEGE OF ENGINEERING Outliers · Partition · Uncertainty Sensitivity · Optimization · Fitting *Is the optimization sensitive to the reward signal?* Interaction 1. Zero-out harvest rewards % O Harvest Percent () 2. Re-optimize and generate rollouts \mathcal{C} Optimize a New Policy Expectation 3. We don't suppress fires if we can't harvest trees 1,400,000 1,200,000 1,000,000 Cumulative 800,000 Suppression Cost 600,000 400,000 200,000 Lo 0 1 2 3 4 5 6 7 8 9 10 **Buggy Result** 4. We spend money on suppression 1,400,000 1,200,000 1,000,000 Cumulative 800,000 600,000 Suppression Cost 400,000 -200.000 Lo 2 3 4 5 6 7 8 9 0 1 10 **Oregon State**

COLLEGE OF ENGINEERING	MDPs: Testing/Debugging
Sensitivity · Optimization · Outlier	$s \cdot Partition \cdot Uncertainty \cdot Fitting$
Are the largest f	ires realistic?
Interaction	
1. Change the year to the one with the largest fire	2. Brush histogram to view largest fires
5.00 4.00 3.00 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1.5 2.5 3.0 3.5 4.0 4.5 5.0 1.5 5.0 1.5 5.0 1.5 5.0 1.5 5.0 1.5 5.0 1.5 5.0 1.5 5.0 1.5 5.0 1.5 5.0 1.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	Cells Burned 0 1000 2000 3000 4000 5000 Cells Burned
Expectation	Buggy Result
3. Fire break prevents spread	4. Fire break doesn't prevent spread
Spread Spread No Spread	

COLLEGE OF ENGINEERING

- -200,000 60

Sensitivity · Optimization · Outliers · Partition · Uncertainty · Fitting

Do policies partition the state space?

Interaction

Buggy Result

5. Let-burn-all fires are the same in the present, and larger in the future

Use Case Study of MDPvis

We tested a new wildfire policy domain

- Visualization Developer: 1 Ph.D. Student in Computer Science
- New Fire Domain Developer: 1 Ph.D. Student in Forestry
- Wildfire Optimization Expert: 1 faculty research assistant

We found numerous bugs

Evaluation of MDPvis

Evaluation of MDPvis

- 1. **Compare:** Same model with different policies
- 2. Expect: Same ignition date in both rollout sets.
- **3.** Actual: Policies change the weather.

Conclusion

Summary

We need visualization IDEs for MDPs!

Interactive Demo

MDPVis.github.io

* Not robust to many *simultaneous* requests

Thanks

- Reviewers: <you know who you are>
- Advisor: Thomas Dietterich
- **Research Group:** Ronald Metoyer, Claire Montgomery, Rachel Houtman, Mark Crowley, Hailey Buckingham
- Funder: National Science Foundation

MDPVis.github.io

This material is based upon work supported by the National Science Foundation under Grant No. 1331932.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

COLLEGE OF ENGINEERING

End.

Questions?

MDPVis.github.io

Contact Email: VLHCC@SeanBMcGregor.com Twitter: @SeanMcGregor

End.

Come to the Full Demo!

MDPVis.github.io

Contact Email: VLHCC@SeanBMcGregor.com Twitter: @SeanMcGregor

COLLEGE OF ENGINEERING

Sensitivity · Optimization · Outliers · Partition · Uncertainty · Fitting

How consistent is the policy for small changes to the model?

Interaction

 Optimize and generate rollouts Coptimize a New F Add air tankers to the model Optimize and generate rollouts Coptimize a New F Click the "Compare Rollouts" button Expected Value Rollout 	Policy % 0.5 Suppression Effect (a) Policy Nue \$ -570788.61 Set 5 Compare To Nue \$ 9129.08 Set 4 Compare To
5. Policy is identical	-1
Buggy Result ¹⁰ ^{15 20 25 30 35 40 45}	0 Policy Probability 1 50 55 60
6. Many differences in policy distribution	۲1
62 0 5 10 15 20 25 30 35 40 45	50 55 60 Policy Probability

COLLEGE OF ENGINEERING

Sensitivity · Optimization · Outliers · Partition · Uncertainty · Fitting

Does the growth rate match the historical dataset?

Oregon State

Let's Construct a Simple MDP: "Pixel Forest"

